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Abstract- Vehicular and highway automation has 

demonstrated superior safety performance, increased 

capacity, reduced fuel consumption and enhanced overall 

comfort and performance for drivers. This paper proposes 

an exponential high gain, sliding-mode observer (SMO) as a 

cruise control strategy for a longitudinal vehicle model. 

First, longitudinal   model of vehicle is analysed and transfer 

function of model is obtained. Thereafter, sliding mode   

high gain observer is designed considering uncertainties and 

external disturbances. The model with integrated high gain 

observer is simulated on MATLAB environment. Numerical 

simulations on longitudinal vehicular model with designed 

Sliding mode controller demonstrate faster convergence, 

improved position and speed tracking. 

Index Terms- SMO (sliding mode observer), HGO (high gain 

observer), Estimation, Lyapunov function. 

I. INTRODUCTION 

Automatic vehicle speed control or cruise control is one 

of the widely researched topics in the automotive 

industry. [1]. Most of research in the literature embodies 

the objectives of   range policy, string stability and human 

comfort & safety [2-8]. Few studies are mainly focused 

on reducing the model uncertainty and external 

disturbance, since the vehicle dynamics are highly 

nonlinear and uncertain [9]. Some researchers have tried 

to develop model based lower level controller which 

determines control inputs using the vehicle parameters 

and inverse dynamics [10]. Furthermore, linearized 

vehicle model has also been considered in literature to 

design gain scheduling linear quadratic controller for 

throttle and brake actuation [11]. The problem of cruise 

control system is to maintain the output speed of the 

system as set by input signal. This can be achieved by 

various control strategies such as proportional-integral 

derivatives (PID) controller, state-space controller and 

fuzzy logic based controllers. [12]. In modelling of a 

cruise control, it is vital that model takes into account all 

of the important parameters, which directly or indirectly 

affect the overall performance of the system. [13] Post 

modelling, the designing of appropriate controller along 

with stability analysis based on linear state-space model 

or transfer function is performed. [13] 

 

 

Sliding-mode control is a well-established method for 

handling disturbances and modelling uncertainties 

through the concepts of sliding surface design and  

equivalent control. Based on the same concept, sliding-

mode observers (SMOs) have been developed in literature 

for robust estimation of system states [14]– [22].  State 

estimation of nonlinear systems has been an active field of 

research in the last few decades.   High-gain observers 

have received wide attention for uniformly observable   

single output systems [23]- [25].  A constant gain 

observer is a special class of nonlinear systems that does 

not require the nonlinear transformation [26]. 

Furthermore, there is significant   improvement in the 

existing design of the HGO with incorporation of the 

nonlinear system into the gain design strategy [27]. The 

Lyapunov-based approach is followed to tackle the 

problems of state observation in the presence of bounded 

uncertainties/unknown inputs in HGO. 

In this article, a high gain observer based SMC is 

designed and integrated to the vehicle dynamics on 

MATLAB Simulink Platform.  The output of the system 

is controlled by the controller in order to provide the 

desired speed at which the car is to be maintained in the 

presence of uncertainties and external disturbance.  

The remainder of this paper is organized as follows. 

Section II presents the cruise description and modelling. 

Section III presents the design of high gain observer that 

incorporates an SMO. In Section IV, design of sliding-

mode controller is discussed. Section V presents the 

results of cruise control. Section VI embodies conclusion. 

II. SYSTEM DISCRIPTION 

The purpose of the cruise control system is to regulate the 

vehicle speed so that it follows the driver’s command and 

maintains the speed. The Vehicle block represents a two-

axle vehicle body in longitudinal motion as shown in fig 

(1). The vehicle can have the same or a different number 

of wheels on each axle.  The vehicle wheels are assumed 

identical in size. The vehicle can have a canter of gravity 

(CG) positioned at or below the plane of travel. 

The vehicle block accounts for body mass, aerodynamic 

drag, road incline, and weight distribution between axles 

due to acceleration and road profile. It may optionally 
include pitch and suspension dynamics. The vehicle does 

not move vertically relative to the ground.  

The vehicle axles are parallel and form a plane. The 
longitudinal, x, direction lies in this plane and 

perpendicular to the axles. If the vehicle is traveling on an 

incline slope, β, the normal, z, direction is not parallel to 

gravity but is always perpendicular to the axle-

longitudinal plane. 
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Fig. 1. Longitudinal vehicle model 

 

TABLE I. PARAMETERS OF LONGITUDINAL VEHICLE 

Parameters Meaning Unit 

g Gravitational acceleration m/s2 

β Incline Angle rad 

m Mass of Vehicle kg 

h Height of vehicle from CG m 

Vx Velocity of the vehicle m/s 

Vw Wind speed m/s 

Fxf, Fxr Longitudinal forces on each wheel at 

the front and rear ground contact 

points, respectively 

N 

Fzf, Fzr Normal load forces on each wheel at 

the front and rear ground contact 

points, respectively 

N 

A Vehicle cross section area m2 

Cd Aerodynamic drag coefficient  

ρ Mass density of air Kg/m3 

Fd Aerodynamic drag force N 

n Number of wheels on each axle  

 

Case: When Vx > 0, the vehicle moves forward,  

When Vx < 0, the vehicle moves backward, 

When Vw > 0, the wind is headwind, 

 When Vw < 0, the wind is tailwind,  

By applying newton’s second law for z direction (i.e no 

vertical acceleration) ,[] 

0 = 𝑤 ∗ 𝐶𝑜𝑠𝛽 − 𝐹𝑧𝑓 − 𝐹𝑧𝑟 + 𝑅ℎ𝑧 

𝑚𝑎𝑥 =
𝑤

𝑔
𝑎𝑥 

= 𝑚
𝑑𝑢

𝑑𝑡
 

= Fxr + Fxf − w ∗ Sinβ − Rxr − Rxf − DA − Rhx      (1) 

The aerodynamic drag force depends on the relative 

velocity between vehicle and the surrounding air, given 

by- 

DA = 0.5 ∗ ρ ∗ Cd ∗ A(Vx + Vw)2 

The rolling resistance arises due to work of deformation 

on the tire and road surface and is roughly proportional to 

the normal force on tire- 

Rx = Rxf + Rxr = f(Fzf + Fzr) 

A simple model of the longitudinal motion of a vehicle 

can be used to determine changes in the vehicle forward 

motion due to grades, breaking, accelerating with, Rhx =0, 

Fxr = 0 & ax= du/dt, 

At equilibrium du/dt=0 

Fx0 = mgSinβ0 + ρmgCosβ0 + 0.5 ∗ ρCdA(Vx + Vw)2    

              (2) 

The actuator and the vehicle propulsion system are 

modelled as cascaded of first order 

C1

(1 + sT)
 

However, a problem of non-linearity arises, one way to 

overcome this problem is to linearize all of the state-

equations by differentiating both left and right hand sides 

of the equations.  

The linearized model provides a transfer function can be 

obtained by solving the state-equations for the ratio of ∆V 

(s) / ∆U(s).  

 

∆V (s) 

∆U(s)
=

KC1

(τs + 1)(1 + sT)
 

        

Where τ = m
ρCdA(Vx + Vw)⁄  

K = 1/ ρCdA(Vx + Vw) 

 

∆V (s) 

∆U(s)
=

0.0144

(𝑠2 + 0.018𝑠 + 0.006)
 

Which can be represented as  

x1̇ = θ̇

x2̇ = −0.018x2 − 0.006x1 + 0.0144 u(𝑡)
𝑦 =  𝑥1

}               (3) 

 

II. DESIGN OF HIGH GAIN OBSERVER 

Design a high gain observer as 

x1̇̂ = x2̂ +
α1

ϵ
(y − x1̂)

x2̇̂ = −0.018x2 − 0.006x1 + 0.0144 u +
α2

ε2
(y − x1̂)

} (4) 

Where α1& α2 are the positive values, and ϵ ≪ 1. 

Let g1 =
α1

ϵ
, g2 =

α2

ε2 then we have, 

x1̇̂ = x2̂ + g1(y − x1̂) 

x2̇̂ = −0.018x2 − 0.006x1 + 0.0144 u + g2(y − x1̂) 

Where x̌ = x − x̂ 
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Hence, from above equations, 

x1̃ = −g1x1̃ + x2̃

x2̃ = −g2 − ax2̃

y =  x1

}                                                               (5) 

i.e  ẋ̃ = Ax̃ 

where A = [
−g1 1
−g2 −a

], x̃ = [
x1̃

x2̃
] 

It is assume that if A is Hurwitz, then  𝑥 will converge to 

zero exponentially, and can be expressed as 

‖x̃(t)‖ ≤ ∅0‖x̃(t0)‖e−σ0(t−t0)                (6) 

Where ∅0 and 𝜎0 are positive constants. 

Consider σ0 is related to the minimum eigenvalue of A; 

the smaller the € value is, the bigger the hi value is, and 

then the smaller the minimum eigenvalue of A is, the 

bigger the 𝜎0 value is. 

Therefore, the convergence of ‖x̃(t)‖ depends on €, and 

high gain observer will improve convergence precision of 
‖x̃(t)‖ greatly. 

  

III. SLIDING MODE CONTROLLER DESIGN 

The system is designed to drive and then constrain the 

system state to lie within a neighbourhood of the 

switching function. Trajectory of a system is designed by 

a sliding mode controller.  

Let the sliding surface is represented by “s”. The surface 

“s” is chosen to reduced order dynamics when constrained 

to plane. 

The sliding mode function is- 

s = ce +  ė 

where c > 0. 

The tracking error and its derivative value is- 

ŝ = cê +  ê̇ 

where ê =  θd −  θ̂ and ė ̂ =  θd ̇ − θ̂̇  

The sliding mode controller is 

u(t) =  
1

k
 (θd̈ +  aθ̂̇ +  bθ +  ηŝ +  cê)̇            (7) 

where η>0, ê =  θd − θ̂ and ŝ = cê +  ė.̂ 

Let the Lyapunov funcion for the controller  

VS =  
1

2
s2 

Since 

ë = θd −̈ θ̈ = θd +̈ aθ̇ +  bθ − ku 

ṡ = cė + ë = cė +  θd +̈ aθ̇ +  bθ − ku 

then  

ṡ = cė +  θd +̈ aθ̇ +  b − (θd̈ + aθ̂̇ +  bθ + ηŝ + cė̂) 

= cẽ̇ + aθ̃̇ − ηŝ =  −ηs +  ηs̃ + cẽ̇ + aθ̃̇ 

= −ηs +  η (−cθ̃ − θ̃̇) + c (−θ̃̇) + aθ̃̇ 

= −ηs +  η (−cθ̃ − θ̃̇) + c (−θ̃̇) + aθ̃̇ 

= −ηs − ηcθ̃ +  (a − η − c)θ̃̇ 

where θ̃ = θ − θ̂, θ̃̇ = θ̇ − θ̂̇, 

 ẽ = e − ê = −θ + θ̂ = −θ̃,   

ẽ̇ =  −θ̃̇ and s ̃ = s − ŝ 

= cẽ + ẽ̇ = −cθ̃ − θ̃̇ 

Then, 

VS =̇ − ηs2 + s (−ηcθ̃ + (a − η − c)θ̃̇)

= −ηs2 + k1sθ̃ + k2sθ̃̇, 

where k1 =  −ηc and k2 = a − η − c. 

Since k1sθ̃  ≤  
1

2
s2 +

1

2
k1

2θ̃2  

and k2sθ̃̇  ≤
1

2
s2 +

1

2
k2

2θ̇2 

VṠ ≤ −ηs2 +
1

2
s2 +

1

2
k1

2θ̃2 +
1

2
s2 +

1

2
k2

2θ̇2 

=  −(η − 1)s2 +
1

2
k1

2θ̃2 +  
1

2
k2

2θ̃̇2                (8) 

where η > 1. 

As per the, Lyapunov function for the closed system is 

improved and designed as 

V =  VS + VO, 

where VO =  
1

2
x̃Tx̃ =  

1

2
θ̃2 +  

1

2
θ̃̇2. 

Since V̇O = x̃T ẋ̃ = x̃TAx̃, and 𝑉̇𝑂converges to zero 

exponentially, i.e.,  

x̃TAx̃  ≤  χ(•)e−σO(t−tO), 

where χ(•) is a K-class function ‖x̃(tO)‖ 

Then 

V̇ ≤  −(η − 1)s2 +  
1

2
k1

2θ̃2 +  
1

2
k2

2θ̃̇2 +  x̃TAx̃ , 

= − η1VS −
1

2
η1θ̃2 − 

1

2
η1θ̃̇2 +  

1

2
 (k1

2 + η1)θ̃2 +
1

2
(k2

2 +

η1)θ̃̇2 + 𝑥𝑇𝐴𝑥̃ 

≤  −η1V +  χ(•)e−σO(t−tO) 

where η1 = 2(n − 1) > 0, σO > 0, 𝑥 

=  [θ θ̇]T 

The solution of   

V̇ ≤ − η1V χ(•)e−σO(t−tO) 

V(t) ≤  e−η1(t− tO)V(tO) +  χ(•) ∫ e−η1(t− τ)e−σo(τ− tO)dτ
t

to

 

=  e−η1(t− tO)V(tO) χ(•)e−η1t+σOtO ∫ eη1τe−σoτdτ 
t

to
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= e−η1(t− tO)V(tO)
 χ(•)

η1−σO
e−η1t+σOtO  e(η1−σo)τ⃓to

t  

= e−η1(t− tO)V(tO) 
 χ(•)

η1−σO
e−η1t+σOtO(e(η1−σo)t −

e(η1−σo)to ) 

= e−η1(t− tO)V(tO) + 
 χ(•)

η1−σO
(eσO(t−to) −  e−η1(t−to) 

i.e., 

 lim
𝑡→∞

𝑉(𝑡) ≤  𝜃 

Since, 𝑉(𝑡) ≥ 0, then we have𝑡 → ∞, 𝑉(𝑡) = 0 and 𝑉(𝑡) 

to zero exponentially, the convergence precision depends 

on 𝜂1, 𝑖. 𝑒. 𝜂. 

IV. RESULT & DISCUSSION 

The system is modelled using Matlab/Simulink as shown 

in figure 2. The speed of cruise system, based on an 

exponential high gain observe is tracked. A closed system 

exponential convergence is also analysed. 

The following parameters were chosen for simulation: 

k=.014; a=.018; b=.006; c=5; xite=10, k=.014; h1=400-a; 

h2=40000; 

The initial states are 𝑥1(0) = 0.20, 𝑥2(0) = 0, and ideal 

position signal is set as θd = sint. 

 

Fig. 2 shows the simulation model of controller and 
vehicle. 

 

 

Fig 2. Block diagram of simulate cruise control with SMC 

 

Fig 3. Control input for plant 

 

Fig 4. Speed & Position tracking 

The simulation results of control input of vehicle is shown 

in Figures (3). Improved estimation performance can be 

clearly observed from control input. It is seen that the 

speed tracking and position of vehicle in fig. (4) shows a 

better results and gives small error which enhance the 

cruise trajectory. 

V. CONCLUSIONS 

The mathematical model for cruise control system has 

been derived. A robust HGO design is developed for a 

cruise system by incorporating a sliding-mode term into 

the nonlinear observer to improve estimation accuracy.  

Vehicle model along with Sliding mode observer is 

simulated in MATLAB Simulink environment. 

Simulation results obtained show superior cruise 

trajectory, speed tracking and minimised position error.  
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